

Monitoring Tissue Oxygen Saturation in Microgravity

Problem Statement

- Technology is needed for monitoring tissue oxygen saturation (StO₂) in space
- This is because evidence now suggests that oxygen levels may be lowered in the body's tissues during spaceflight and may accelerate bone decay
- Commercial medical monitoring technology that has recently been developed could be used to measure StO₂ in space, following evaluation and maturation in microgravity
- Users: NASA and other space agencies; commercial spaceflight providers and participants; patients on Earth

Technology Development Team

- PI: Dr Thomas Smith University of Oxford, UK thomas.smith@ndcn.ox.ac.uk
- Funding: NASA Flight Opportunities Program
- The payload is a proprietary product of Hutchinson Technology Inc., Minnesota

Proposed Flight Experiment

Experiment Readiness:

Experiment is flight ready

Test Vehicle:

Parabolic Aircraft

Test Environment:

Microgravity (0 g)

Test Apparatus Description:

- InSpectra[™] StO₂ Spot Check (model 300)
- StO₂ is measured by near-infrared spectroscopy and is displayed continuously in real time
- Portable, handheld, battery-powered handset is connected by a 1-meter cable to the interface clip, which is applied to the test subject.

Technology Maturation

- Current TRL 4: Established technology but payload has not been flight-tested
- Expected increment of two TRL levels with this flight campaign – TRL 5 and 6: Validation and demonstration in the relevant environment (microgravity)
- This would be achieved by successful StO₂ measurements in microgravity during a 2014 flight campaign

Objectives of Proposed Experiment

- Assess successful basic operation of the technology with respect to data capture in microgravity conditions
- 2. Assess ease of use and identify possible risks in the flight environment
- Make the first measurements of StO₂ in microgravity, providing unique clinical data to guide further maturation for use in space (this data may also provide benefits for this technology's use in patients)